In this article, I want to share a design I have created for a “Pop up Covid-19 Vaccination Clinic” Its based on the practices as used by the NHS in England. The design is flexible and can be modified to suit local clinical regulations. My focus is on technical infrastructure. If anyone uses the draft information below, its essential to use these plans as inspiration and involve clinical experts in the final design to be deployed.
The Site Plan The site has been designed to facilitate the smooth flow of people through a one way system. Markings will be placed on the floor to remind patients to maintain the correct social distance. A waiting area is provided outside where patients can queue and have their temperatures checked. With good planning, appointment slots can be given to patients so that they arrive at specific times to prevent overcrowding at the entrance. Before entry, the temperature of each patient will be checked.
This is a “pop-up” clinic which means that it needs to be built quickly and brought into service. The modules in the plan can either be tents or temporary structures made from local materials such as plastic sheeting and timber.
Once inside the clinic, the patient is registered on the appropriate IT system which is defined by the country government where the vaccinations are taking place. Some vaccines will require a second future dose, so accurate record keeping and recording of patient contact details will be essential. Screening can also be managed at the registration post. Any patients who fail screening for reasons such as previous reactions to vaccines can be taken out of the clinic via a side entrance.
The next stage is vaccination. This site has been designed to support 8 clinical bays, so it is possible to have a daily throughput of 600+ patients if the clinic is open for 12 hours a day. Good HR planning is essential as there should be sufficient staff to allow for breaks. In hot countries larger teams may be needed as the time staff can spend in full PPE will need to be limited.
After immunisation, an observation area is provided if its needed for the vaccine being administered. In the UK, the Pfizer vaccine is using new techniques and as a precaution, patients will stay in the observation zone for 15 minutes. If there has been no reactions to the vaccine, the patient will be free to leave. Should there be a severe reaction such as anaphylactic shock, the resuscitation module is set up where the patient can be managed.
The whole clinic is secured with fencing. Inside the clinic, there are two restricted areas where access is limited to staff only. A main service area is used to host the pharmacy and staff office / rest room. Another secure area is set up to host power generation and waste management.
Other modules can be added to the staff zone such as wash rooms and PPE storage.
ICT The basic IT will consist of an internet connection such as 3G or satellite for remote areas. Secure Wi-Fi hotspots will be set up for the computers and if resources permit, public Wi-Fi can be used to provide patients with information. The software used to manage patient information will need to be determined locally in each country. Its likely to be a government system.
Clinical Waste Management Waste from the clinic needs to be handle carefully and responsibly. Firstly items of PPE may need to be incinerated so that the risk of contamination is removed. The empty containers which held the vaccine must either be returned to a formal system to recycle the containers or they must be destroyed. The containers must not fall into public circulation as they may be used by criminal gangs to make money from fake vaccines.
Cold Chain Vaccines must be stored in a medical standard fridge. The specific model of fridge will be determined by the sort of vaccine in use and its environment requirements. As part of the clinic design, there needs to be stable power available for the fridge with back-ups. If power fails, this might result in temperature levels rising which will destroy the vaccine. The following design concept should be sufficient to mitigate this risk.
The power source will either come from the local grid or generator. An Inverter/Charger is provided and will charge batteries while power is available. Should the power fail, the battery will take over and power the fridge via the inverter. The battery bank will be sized to provide power for at least 24 hours. The Inverter/Charger has built in IOT technology and will send an alert to let management know that power has failed. (Note – core IT infrastructure will also be connected to the same back up power supply).
As a further protection, a smart temperature sensor can be added to the fridge to monitor temperature and send alerts when temperatures are close to becoming too high or too low.
Conclusion This is a very high level design. There will be various clinical factors to be added. Other modifications may be needed to make the site accessible to disabled patients. This design is a good starting point for a team of experts to begin work.
In the last edition, I highlighted the challenges faced
by home workers who live in locations where the power supply is either
intermittent or is not available at all. Since the article was published, I
have carried out rigorous testing of two systems. Both performed well. One
system was “Out of the box” and the other system was built from separate
components I was able to source from suppliers in the UK.
The quickest solution is to buy a solution which has been
pre-built. But with the world in lockdown and many flights cancelled it may not
be possible to import solutions, so the “Build your own” option may be the only
way to provide power. In addition to the home solar designs below, I was
recently asked to look at design for 20 staff.
Voltaic Arc 20W Solar Charger Kit: This system is supplied by Planson International. Over the course of four days, I was able to use a Lenovo X390 laptop without needing to connect to the mains power to top up.
The Lenovo X90 uses around 65 Watts when charging which is a
little more than the capacity provided from the solar panel, however it only
takes just over an hour to charge. Testing was conducted in the UK during sunny
weather (early April). During the testing enough energy was created to produce
two full laptop charges a day.
It is also possible to get more from a charge by doing the following:
Use battery save functions
Do not play music – it consumes power
Reduce the screen light power (try to work in a
shaded place
During conference calling, avoid video if
possible.
The Voltaic kit also comes with
a LED light which is more than sufficient for a desk and a mains charger which
can be used to charge the battery in the places where intermittent power is
needed.
100W Home kit (Built from separate components: This
system can be built from components purchased locally. In the UK, the following
components were purchased from RS components (rswww.com).
100W Solar Panel $160
100 A/H Lead acid battery $280
100W Inverter $70
Controller (10A) $80
Cables and plugs $80
For a total of approximately $680, this system is sufficient
to power a few LED lights, a laptop, mobile phone and a printer. The purpose of
the controller is to manage the power from the solar panel so that the
batteries is now overcharged. The controller also has a display which indicates
how much charge is being generated, and how much energy is stored in the
battery.
This system can also be scaled up. With the same controller,
two further 100W panels can be added (Bringing the capacity to 300W or 9A).
Additional batteries can also be added to the system to increase storage
capacity. Important Note: Energy loads must always be connected to the
output terminals on the controller and not to the battery directly. This will
prevent the battery from being completely drained (which can cause damage to
the battery).
The inverter in this design provides a maximum power of
100W. Larger inverters can be used, but till consume power more quickly. Given
that it often takes just over an hour to charge many laptops, I think a single
invertor will be sufficient for charging laptops.
For lighting, I would recommend 12V LED lights rather than
using 220V lights connected to an inverter. This is more energy efficient as
there are often energy losses within most inverters.
Small office Design for 20 users
When designing a system for a small office, it’s important
to work out what the overall load is. This will help to identify what
components will need to be purchased to build the system. Once the system has
been set up, it must only be used for the power load it was designed for. If
more items are loaded (e.g. more computers) the system may not have the
capacity to support the increased load without upgrading the solar system
first.
Many years ago, I developed a tool to estimate the size of a
solar energy system. This first screenshot lists the items we need to power.
The load list does not contain items like fridges and
security lights as I would recommend buying dedicated stand-alone solutions
which have their own panels built-in. Please note that in addition to power
load information, it’s important to include information about how long each
item is used each day.
The next table calculates the amount of panels and batteries
needed to provide the power for the load listed in the first table. The battery
bank has been specified to store enough energy for three days. The solar panel
has been designed to produce enough energy to service the load and provide a
little extra power which can be used to store up energy for three days.
So for this load, if we use 100W solar panels, and 100A/H
batteries, we will need 29 Panels and a bank of 50 Batteries. In addition to
this, we will need a fairly large controller which can handle 150 Amps. Larger
controllers also require bigger cables to transfer the power. In some places
higher capacity cables and controllers can be difficult to source, but it’s
possible to achieve the same result by building three smaller 50A systems.
As a very rough guide, here is an estimate for building the
system above.
150 Amp controller: $2300
50 Batteries: $1250
29 Panels $4640
Inverter 2KW $1000
Cables etc $1500 Total $10,690
This is a rough estimate which does not include shipping and taxes. Whilst the initial set up cost is high, over time, the overall return on investment is good as no fuel is used. The only component which needs to be changed from time to time is the batteries.
Conclusion: Solar energy can be a great solution for
remote locations where power is not available. It is also a cleaner method of
providing energy. With some good planning, selection of low powered office systems,
smaller power systems can be purchased. Good discipline is also important as
it’s easy for a system to fail to deliver if extra load is added which was not
planned for.
Over the next few weeks, I am going to be focusing on
technical topics which can may assist the aid sector in our fight against
COVID-19. So let me kick off this series of articles by addressing one
important issue that affects aid workers living in the “Global South” –
lack of stable electricity at home. There are still vast sectors within
cities where reliable power is absent. Over the past week, I have had heard
that staff need to send laptops back to the office to be charged so that they
can continue working. This requires staff to move around and mix, which goes
against our practice of trying to stop this virus from spreading.
So here are a few ideas to overcome the problem.
Power consumption: Before we explore
any power solutions, it’s important to have an understanding about how much
power is needed to keep a staff member productive. Effectively we need to
create a power budget. The idea here is to strip consumption back to the
absolute minimum so we only need to build the smallest power solution and keep
costs down.
So basic needs are:
Laptop computer (Without the external monitor as
this uses extra power!)
Mobile phone and or a 3G/4G hotspot
LED light for the workplace.
Mobile phones and most 3 or 4G hotspots / dongles can be
powered directly from the computer (but will reduce computer battery life).
Portable solar powered lanterns can also be a great solution for the home
office. If possible, try to avoid using additional technology like printers,
scanners and external monitors if you can. The camera on a mobile phone
can be used as a very effective scanner with apps like Microsoft Office Lens.
Online electronic signature software should also be used by organisations so
that there is no need to print hard copies for signature.
Interesting
Fact: During the Ebola Crisis, medical staff did everything online – including
prescriptions as paper is a great medium to pass a dangerous virus between
people!
The laptop is the main consumer of power so we need to understand how much
power the laptop will use so that we can size up the correct power solution.
Our target should be to provide enough power so that the computer will run for
at least 8 hours. Ideally I would like to cap it at 8 hours in the interest of
work-life balance, but some people may need to work for longer periods,
especially if they are supporting the COVID-19 response.
The basic rule of physics which
applies here is this: Larger power needs require larger power systems,
hence more costs! So one quick win here is to look at the office computer
estate and if possible, carry out some temporary redistribution so that the
more power thirsty computers are allocated to staff that live in places where
there is stable power. This will leave the more efficient computers for the
people who live in the off grid areas.
So here are some power budgets
for two popular computers used by NGOs
Model
Lenovo X390
Lenovo T470p
Power adapter
65W
90W
Battery Capacity
48 WH
48 WH
Battery Life
3.8 hours
2.5 hours
Battery life is subjective to how the computer
is being used.
The X series computer would be a
better computer for a power starved setting it needs less energy (65W) to
charge, and the battery last longer.
TIP:
Computer battery life can be extended by using power save function on the
laptop, and by installing larger battery packs (But larger batteries take
longer to charge!)
Unreliable power scenario: In this
scenario, we will look at what solution we could use to keep a laptop running
in a location where power supplies are intermittent. The following solution is
fairly cost effective.
This system is designed to use
the grid power when its available to charge up battery. The charger
should be high power, at least 30 Amps or more charging capacity. The cheaper
low power charges would take too long to fully charge! The battery should be
around 120 AH or more so that it can run an inverter for up to 10 hours. A 100W
inverter should be sufficient to charge a laptop. Many inverters have a USB
charging point built in which can power a phone.
Safety first: When a battery is charging, it can
produce hydrogen gas which is explosive. So lead acid batteries should be
placed in well-ventilated and away from any naked fames (such as a cooker).
As this system supplies 220V AC,
be careful that others in the house do not plug things into the system and
steal your electricity!
No Power: For locations which is
completely off grid, here is a design which should be sufficient to keep the
technology running for a homeworker.
The 120W panel at peak will
produce 120W energy, but it could be less when the sun is weaker earlier or
later in the day. So the idea is to locate the panel in a place where it will
get the maximum sunlight. The controller uses the power from the panel to
charge the battery. The 20A specification means that the system can be scaled
up to two panels if more capacity is needed.
During the day, the system should
produce 600-800 w/h of energy which is more than sufficient to run a
computer, LED light and a charge a mobile phone.
Safety
first: When a battery is charging, it can produce hydrogen gas which is
explosive. So lead acid batteries should be placed in well-ventilated and away
from any naked fames (such as a cooker).
On cloudy days, solar panels will
still produce some electricity but not as much as on a sunny day. As a
temporary solution, this design with connecting cables should cost no more than
$650. For longer term use, I would recommend doubling up on the panel and
battery as it will store more power and will keep a laptop working for more
than a couple of days during bad weather.
TIP: The inverter I have specified can be plugged into a car, so
this is a good back up plan should energy stored in the two systems above run
out of energy. Make sure that the engine is running (out in the open!) when an
inverter is in use.
Conclusion: These two solutions are a “Quick and
Dirty” design. It utilises components which are readily available from online
retailers or hardware stores. Components can be sourced easily in global south
countries. The design can also be fine-tuned to match specific power
requirements by people who have experience in this field.
Around the world, the use of wind and solar farms is
increasing as the efficiency of panels and wind generators increase and
production costs fall. In the global north, the large renewable energy plants
feed power into national grid systems which means that we can reduce our carbon
impact by using the gas, coal and oil fired power stations less. But, there is
an issue. Whilst we can produce plenty of energy from energy farms, we have not
yet really figured out how to store the megawatts of energy efficiently. During
a cycle ride from London to Gibraltar last year, I passed through many wind
farms in France and Spain. On windy days, there were times when only have of
the turbines were not turning. So whilst we have all of this infrastructure,
the maximum benefit cannot be realised as we do not have the technology to
facilitate the mass storage of electricity.
For smaller solar systems like the ones we would use in the aid sector to power a school or a clinic, the same power storage problem exists. In most countries we store energy in lead acid batteries or some other variant. The use of Solar systems can reduce the carbon footprint, but at the same time we are producing a lot of environmental waste which is not good for the communities where the aid sector is meant to be “doing no harm”
The
Battery Problem: The most widely used component in a small solar system is
the lead acid battery. The same battery as we use in vehicles. In a vehicle,
the lead acid battery normally lasts up to three years which is its expected
life. This is because the engine will keep the battery charged. In a solar
system the lead acid battery may last two years if we are lucky. Unlike in a
vehicle, the battery will frequently be drained to less than 50% of its
capacity. If this happens often, longer term damage occurs in the battery cells.
The hot climates where NGOs operate also has a negative effect on the battery
shortening its life further.
Given the short life span of lead acid batteries, the
by-product of the green solar systems is a lot of toxic waste. This is can be a
massive issue in developing countries where they are not geared up for
recycling.
Lithium Ion batteries are often seen as a good alternative to lead acid batteries because they can hold more charge. But there are some major disadvantages. Lithium Ion batteries contain some very toxic chemicals and have a troubled history of catching on fire. Most airlines will not transport larger lithium batteries due to the fire risk.
An alternative approach: There are better
technologies and in the future we will see innovation come from the automotive
industry. Tesla and other manufactures of electric cars are working hard
to develop battery technology which will allow electric vehicles to go much
further than they can today. As vehicles move from petrol and diesel to electric,
the mass production of new battery technologies will bring the cost of energy
storage down. Where the automotive industry produces answers for energy
storage, in the aid sector, we will be able to take advantage of new battery
technology for our solar systems.
We have been using electric vehicles for many years and there are already battery technology we can use now to make our solar systems more sustainable. Schneider Electric uses Nickel Sodium batteries to store energy in its Vilaya range of solar systems.
The Nickel Sodium battery (This example made by FZSoNICK)
works in an interesting way. The battery need to be warmed up so that the salt
inside melts. Once the battery is at its operating temperature, energy can be
stored and discharged as needed. The lifetime of the battery is 13-15 years. At
the end of life, the waste product is a block of salt and some associated
electronics.
The FZSoNICK has the ability to store 10 KWH of energy in
this single unit. The cost for one battery is roughly $10,000. It’s a big
upfront costs, but there is a return on investment over time. So let’s take a
closer look at the numbers.
A good quality deep cycle 90AH battery will cost around
$(US)250 and can store 1KWH of energy. Taking in account that we don’t want to
discharge a lead acid battery than 40%, then we need to buy more batteries than
the stated capacity to ensure that we can store and use the 10KW without
damaging the battery bank. So for this example, we would need to buy 14 lead
acid batteries at a cost of $3500. As the lifetime of the battery is
likely to be two years or less, over the course of 12 years, we would need to
change the batteries 6 times, which comes to a total of $21,000 or more. This
does not include other costs such as installation and shipping.
So whilst there is a higher
start-up costs, the return on investment is significant. But there are other
advantages which you will see in the following summary:
Cheaper to run over a long period
Batteries take up much less space which means
less cables are needed for installation.
No fire risk from gasses such as hydrogen
End of life waste is smaller as this technology
does not use as many materials as other batteries. The main waste product is a
block of salt.
Battery is stable and safe to transport
Good return on investment
Deployment example: Nickel Sodium batteries are built into complete systems such as the Villaya solar system from Schneider Electric. The solar plant is transportable with electronics installed and fixed to the walls of the an ISO container. This approach is great for disaster preparedness due to its mobility.
This system can produce enough power to run a small office.
In addition to the power circuits, communications technology can also be fitted
inside the container so that internet connectivity can be provided in addition
to electricity.
The Villaya system is designed with the appropriate systems
to protect the circuits from lightning, which means that this system is very
well suitable for topical and sub-tropical locations such as Africa.
For disaster response, where it may be difficult to move a
container quickly, it’s possible to design the same system into other
formats which can be broken down to smaller shipping units for future assembly
at a disaster site.
Sustainability: We know that solar panels have a long
life if looked after. Nickel Sodium Batteries also have a long life which means
that a system built on this technology will be sustainable, but technology is
not the only area we need to make sustainable. We need to build peoples capacity.
As we adopt new sustainable technology, with built in monitoring systems, these
systems will become more complex. We need to initiate a training programme to
build the skills of the people who will source, install and maintain solar
energy systems. NGOs will have a massive role to play here as they work
in very remote locations. If they can adopt green energy systems instead of
generators, other sectors might do the same.
In my next article, I will discuss how we in the aid sector
should establish teams within our organisations to take ownership of
environmental affairs and build the skills in house to help reduce the carbon
footprint.
The subject of climate change this year have taken “Centre Stage” in the news. Greta Thunberg has become a household name due to her initial school strike in Sweden and her ongoing global campaign. Here in the UK, Extinction Rebellion have brought parts of London to a complete standstill during two periods of protest this year. The main target of these campaigns have been the big corporates, political parties and governments. But how long will it be before this attention starts to focus on the aid sector?
As aid workers, we want to do good and no harm, but our activities are not exactly green. Many organisations are starting to think about how they can deliver programmes in a green way. We must not pay lip service to climate change by setting up think-tanks or creating a series of academic papers on the topic. We need to be strategic planning and get executive “buy in” from NGO leaders. At the same time we have to take some tactical practical actions now so that we can reduce our carbon footprint. In this article, I am going to put a spotlight on how technology can be an accelerator to reducing our impact on the environment.
NGOs can be found operating in a wide range of environments ranging from cities to remote locations. The electrical supply to many sites range from city mains power to generator. In some rare cases, sites may already be hooked up to a renewable energy supply. The places where NGOs are doing the most damage are the locations where generators are used. Its is in these places where we can have a major positive impact if we take actions to move from generator to green power generation . This will be a challenge and funding change is the biggest obstacle.
The other negative impact on the environment is from the large fleets of vehicles operated by NGOs ang UN organisations. The combination of fleet tracking technology and selecting more fuel efficient vehicles can significantly reduce fuel consumption and save money.
So whether it’s a smoking generator or a car, what can we do to reduce the environmental impact?
Here are some practical actions NGOs can start working on now to start the journey to become a zero carbon organisation.
Monitoring: Data is a really powerful tool which can help organisations to make some key decisions about how they manage the provision of electricity. Smart IOT* Technology can be used to measure the energy consumption of a site. In many countries, utility companies are installing smart meters in residences and businesses to measure how much energy is being consumed. The utility companies use the smart meters to automate the billing process. Because this technology is used widely in many countries, the technology is mass produced which makes it affordable
The Eydro monitor (pictured above) cost approximately $300 and is currently being used by some organisations in developing countries to establish energy consumption benchmarks.
Measurements are taken constantly by the current sensors which clip onto the main power supply cables. The main control box is Wi-Fi enabled and sends data to server where all readings are stored and presented as graphs (see below).
Ideally organisations should try and keep monitoring in place permanently so that after the initial actions to reduce consumption using the data, all future data readings can be used to make sure that sites remain green.
Sustainable Renewable technology: In many locations, solar energy systems are likely to be the best pathway to reaching zero carbon emissions. There are plenty of challenges to address when implementing renewable energy. In the past, the aid sector has had a mix of success and failure when they have tried to implement solar energy systems. This is where lessons need to be captured so that future systems are installed correctly, are built to quality and last for many years.
Here are some examples of best practices aid organisations should build into their technical approach:
Skills – The success of a solar project will partly depend upon the expertise of the people who design, source and install systems. The lack of good electricians is a major challenge in some countries, so its essential that a “capacity building” element is included in any solar energy programme.
Maintenance & Change management – Very often, solar systems have failed because they have either not been maintained, or power consumption have been increased. There needs to be active management of solar systems using the monitoring technology. Alerts can be set to warn of technical issues. Monitoring will also report on power consumption trends. When an increase is consumption is detected, the change can be investigated. The extra power load can be removed, or the solar system scaled up if more power is needed.
Component quality – Local markets may have a range of choices where quality will range from excellent to poor. A solar system needs to be build from good components which will last for many years. Poor quality items are not likely to last long.
Crime and Fraud – There is a risk that solar components may be stolen. So installations need to be hardened against theft. Internally, electronic components, cabling and batteries can be placed in strong enclosures which will protect the systems from theft and tampering.
When sourcing components, organisations need to be aware of fraud. I have some personal experience of poor quality systems being re-ladled with branding of high quality brands. Another fraud risk is where a supplier will re-label a battery or solar panel with a higher capacity than its designed to produced. In 2012, I revealed a fraud to an NGO where the supplier had labelled a poor quality Chinese 80AH battery as a 120AH battery made in Germany!
So, to overcome these challenges there needs to be a structured approach to delivering and then managing the systems. This requires staff training and better sourcing. There is good news on sourcing, the price of components has been falling over the past few years as more solar systems become popular. But in places where good quality parts are not available, part of a wider programme of delivery should be to persuade local suppliers to stock better quality goods.
Donors and funding: So, in places where there is no reliable power,
NGOs will often buy a generator. Most donors will cover the cost of buying the
generator in the first place and then ongoing fuel costs. The problem I have
with the way the aid sector is funded is the short term mind-set. Donors are
rarely keen to invest in longer lasting technology even though the aid
programme supported is all about making a longer term difference to the
communities aid organisations support!.
The most significant barrier preventing widespread uptake of solar energy within the aid sector is the initial start-up costs, which are often significantly more than financing a generator. But in the longer term, fuel consumption and servicing means that the total cost of ownership is more expensive that solar after a few years.
Schneider Electric is a large corporate who operates in the electrical sector and have many years’ experience working in developing nations. Schneider manufactures a range of energy systems including solar. The graph below illustrates the total cost of ownership of their 14 kVA Villaya Solar system versus a generator. There is a high initial start-up investment of $75,000. Subsequent run costs are very low and the breakeven point is reached at around three years.
The system is designed to last for more than 20 years. At year 13, there is another financial peak where the batteries need replacing. The battery spec is interesting as they are sodium based and designed to last for over a decade. When they reach the end of life, the chemical composition of the batteries is significantly less harmful to the environment than NiMH or Lead Acid batteries.
The graph clearly illustrates the longer term financial savings as well as the improved environmental performance. But what is missing is the funding approach by donors and aid organisations. The aid sector need to identify a way to fix the funding issue as soon as possible otherwise our quest to become green will fail!
Some organisations are working on the funding issue already. There are also third party organisations who can provide solar systems to aid organisations with a zero start-up cost. They use a cost recovery model such as pay per KHW in the same way that a utility company would charge for power in a city. NGOs could also consider using unrestricted funding to finance systems and then charge back fees to donors to recover the initial investment and ongoing costs.
Some NGOs already use unrestricted funds to by vehicles and then lease the vehicles to the donor funded programmes.
Lets get started!: Whilst it may take some time to develop the correct funding model to implement larger scale solar systems, there is plenty we can be doing now to reduce our carbon footprint. These actions can be taken across all sites (generator or mains power supplied). This activity is also low cost!
Move to more efficient lighting – LED is a very efficient form of lighting. See comparison above with traditional lighting methods.
IT consumes a lot of energy, so moving servers to the cloud will reduce on site energy consumption. Laptops consume about 30% of the energy used by a standard desktop.
Review where we use Air Conditioning – Are we using too many air-con units in some sites? Can fans be used instead?
Where possible, use more open plan offices – they can be more energy efficient than a site consisting of multiple small rooms.
Data: Use IOT to monitor energy consumption. Proactively use the data to monitor energy consumption and make decisions to reduce energy consumption.
This data may reveal changes which could be made such as reducing the generator size if its too big.
Store energy: why run a generator 24 hours a day when some of the energy could be stored in batteries? During off peak hours, basic services such as IT and communications can remain online and powered from a battery back up.
Collaborate: Where NGOs are working in very close proximity with each other, sharing resources such as generators can reduce the overall impact on the environment.
Fleet: Moving away
from power generation, the large fleets operated by NGOs have a massive carbon
footprint. Technology and data could play a potential role to help reduce fuel
consumption. Some organisations such as World Vision have well established
fleet management systems which is making fleet operations more efficient. There
are two main components to a fleet system which are needed.
Tracking (Also known as IVMS**): This is the technology which is installed on vehicles to capture its location, speed and engine information such as fuel consumption. These tracking systems often include a communications module which sends information to a central fleet management system. In addition to the green benefits, IVMS helps security managers to keep staff safe
Fleet Management System (FMS): FMS tracks data received from each vehicle along. It also holds data about the drivers and servicing. IVMS can provide real-time alerting when certain policies such as speed limits are breached. Data can be used to influence drivers behaviour so that they drive more economically. FMS can also include a booking and dispatch systems so that vehicle tasking is more efficient. By combining several journeys into one.
Conclusion: There is a clear and present danger to society if we do not start to adopt a greener way to conduct humanitarian operations quickly. Technology can be a great accelerator in delivering results. Funding the change is a challenge and the aid sector needs to develop a strategy to make the changes needed.
Climate change will have a massive negative impact on communities. Livelihoods will be destroyed. Communities will simply disappear as climate change destroys crops and create water shortages.
Practical action is needed now. Aid organisations need to do their bit. We will not solve this climate crisis through the formation of think tanks, discussion groups and other “Talking shops” Its only through practical action we will make a change.
* IOT: Internet of Things ** IVMS: In Vehicle Monitoring System
In this issue of the Tuesday Technical, you will find a round-up of some great innovative ideas from recent trade events such as the Mobile World Congress, Aid and Trade and the Emergency Telecoms Cluster open day. We will also take a close look into a great product from the Finance Technology Sector (known as “FINTECH”) which could potential save money for the frequent travellers who work in the aid sector.
In this issue of the Tuesday Technical, you will find a
round-up of some great innovative ideas from recent trade events such as the
Mobile World Congress, Aid and Trade and the Emergency Telecoms Cluster open
day. We will also take a close look into a great product from the Finance
Technology Sector (known as “FINTECH”) which could potential save money for the
frequent travellers who work in the aid sector.
Fintech: For the longest time, the banking sector
has made huge sums of money from Aid workers as they move from country to
country. Whether its hard cash being changed to a different currency or we use
debit or credit cards, it’s the bank who always win. The new Fintech companies
are starting to challenge traditional banks. MPESA is a great example where
mobile money changed the way people got paid and settled bills in Kenya.
For international travellers, there is now a great solution known as the borderless account from Transferwise. This new type of account allows the account holder to keep multiple currencies linked to a single debit card (facilitated by the Mastercard network). The debit card can be used to pay for items or to draw cash from an ATM. The debit card can be topped up online via a bank transfer in many leading currencies. Once funds have been added to the Transferwise account, they can be converted to a wide range of other currencies using the mid-market standard rate (which is the same as currencies listed on XE.com) Here is an example of what rates would look like at today’s rates using Transferwise vs other accounts:
£100 buys $125.84 via Transferise (Including a fee of £0.92), $123.23 via Barclays Bank and $124,18 via Travelex.
Another benefit with Transferwise is that with each account,
you will get a local bank account for each currency. On my Transferwise
account, I have a USD balance with its own USA bank account information. This
is now starting to save me money as when I am paid expenses in USD, I have the
choice of keeping the cash in USD for future use or switching to GBP or EUROS
at competitive rates. This could be a great money saver for those who get paid
in one currency but live in a location which uses another currency. In April,
my bank charged me at a rate of 1.34 to change USD to GBP, where Transferwise
was 1.30 !
Power for the communities: One of the things which
really frustrate me in the energy sector is when I get some smooth sales pitch
from so-called inventors who claims to have a unique idea to solve energy in
the Global South. As we approach the end of the sale pitch and we approach the
great reveal, the solution often turns out to be yet another solar lantern.
Whilst solar lanterns are really useful, this concept is so mainstream now that
innovators need to stop pushing the solar lantern as something new!
So as you can imagine, with my scepticism around this portable energy area it does take something special to grab my attention. At the London Aid and Trade show this year, Yolk, a company based in Korea has developed the “Electric Cow”. This is an innovative way to get small amounts of energy to families in return for allowing their children to attend school. This is how it works:
The system is very simple. A solar panel is built onto a frame which is made in the shape of a cow. The udder underneath (see photo) is a docking station to charge small batteries. When a child arrives at school for the day, he/she will place the battery in the dock. Here the attendance of the children is logged and the battery will be charged during the day. Each battery has a unique code which enables the child to be identified.
At the end of the day, the child takes the battery home where it can be used to power a LED light for three hours or charge a mobile phone. It’s a simple idea, but one which can have a sustainable impact on communities as batteries can be replaced by the school as and when they wear out. See more at http://yolkstation.com/solar-cow-project/
Innovation in communication: Push
To Talk (PPT) is a well-known open method used to communicate in an open
setting. This is where one station transmits by pushing a button, and all other
people on the same channel can hear what is being said. The PTT method has its
origins in radio and has been used in mainly a safety and security context. In
fleet management is a great way to reach all vehicles simultaneously with
important messages to multiple vehicles. In a security related situation, a PTT
call can be made to ask for assistance.
PTT has been slowly declining over the years as people move
to the more private direct dial calls using mobile phones. Whilst this change
is great for privacy, I still believe that PTT is still the best means of
communication for fleets as its simple to use, and certainly safer for drivers
who might need to pass important messages whilst driving. PTT is initiated at
the push of a button, where as a privately dialled call requires some attention
from a driver and if answered, the message goes to one person.
The PTT method is still as relevant now as it has always
been for decades. The good news is that PTT innovation is delivering some great
new solutions for the aid sector. Motorola has introduced some new technology
which could have some impact at a local level. Iridium introduced its satellite
PTT solution a few years ago (as reported previously in the Tuesday Technical).
I have an update on new iridium technology from Icom, a well-established maker
of radios.
So
let’s first take a look at what Motorola is doing.
The new TLK100 looks like a radio and works like a PTT
radio, but it’s not a radio! It uses the internet to establish talk channels
through either its built in WiFi or GSM SIM card. With additional
infrastructure, these devices can communicate with traditional VHF radios. But
if you wanted to run a small radio network locally over WiFi hotspots or a
larger network over a wide area via the cell network, this solution has some
advantages over radio as follows;
Unlike VHF radio, PTT over the internet is
private.
Radio licenses are not required.
Communications cover could be better than VHF as
it relies on internet connections rather than a single base radio station.
VHF has a limitation of cover; roughly 20KM max.
Traditionally where PTT radio has been needed beyond the range of an urban
setting, HF radio from manufacturers such as Codan and Barret would be used. HF
has not been a massive success due to its complex nature. But in areas where
mobile phone networks are reliable, the TLK100 could be a suitable option.
Finally, it is also possible to download an app from
Motorola so that a standard mobile phone can be used to communicate with TLK100
handsets over the internet!
So
let’s look at take a look at what Iridium has been doing in the PTT area
recently.
Towards the end of 2018, Iridium complete its launch series
and now have a completely new satellite constellation in place. A couple of
years ago, Iridium launched its PTT service as part of the new satellite fleet.
There are also plans to improve the Iridium data offer, but we will look at
this in a future edition of the Tuesday Technical.
In 2017, I tried out Iridium PTT in the UK, Nepal, USA and
South Sudan. Whilst I was impressed with the technology and coverage, the audio
quality from the PTT version of the Iridium Extreme satellite telephone was far
from good. The problem was down to the way Iridium was trying to use the built
in earpiece (designed for low volume next to the ear!) as a loud speaker. The
audio distortion was so great that it made the handset almost useless. The
workaround for the PTT Handset is to plug in an external microphone/handset.
So it is good news that ICOM has entered the game with its
new IC-SAT100. Icom is a traditional radio manufacturer from Japan, which means
that the handset looks like a radio and will operate like a radio. But as it
uses the Iridium satellite network, it will have global cover without the dead
spots which HF Radio users frequently experience.
The ICOM is yet to appear on the market, and when it does, I will test the new tech and report back!
Responsible deployment of drones: In some regions
of the world, the word “Drone” has a lot of negative meaning. Here in the UK,
the use of drones brought Gatwick, one of the UK largest airports to a
standstill for almost two days. In other places, military drones owned by
nation states have been used to bomb people whilst small cheap domestic drones
have been used by ISIS to deliver IEDs.
So the word “Drone” has a lot of negative baggage and for
the same reason, UAV is getting a bad press as well, So guess what? Some
bright person has come up with a nice new acronym; UAS which stands for
Unmanned Aviation Systems!
OK, let’s look at the positive. Drones are
increasingly heading towards becoming a major tool for humanitarian work. Over
the past year I have seen plenty of examples ranging from aerial photography to
delivering items. At the Mobile World Congress this year, one organisation was
showcasing a drone cell-phone transmitter which is able to cover a wide area
following a major disaster such as an earthquake.
Drone’s, UAV,s, UAS’s or whatever we might call these devices in the future are
coming our way quickly. It is important that as the aid sector that we develop
our organisations strategies and polices to handle this technology properly.
The World Food Programme is showing some great leadership in this area by
running a training course which covers the topic very thoroughly over three
modules as follows:
2
days flight experience: This is the “hands on” training where students get to
fly a range of UAS technologies including long range fixed wing models.
4
days data training: This module explores what sort of data can be
collected from UAS and how it can be used to inform decision makers. There is
some GIS Mapping included in this module.
4
Days Regulatory & Coordination: In any country, you cannot just show up and
fly. Same applies for UAS. This technology is super sensitive in some places
which means that if an unregulated drone is flown, the pilot can end up in a
deep trouble. So in the model, students will cover aviation law and other
hot topics such as data protection and privacy. As part of the same session,
coordination is also covered. It’s much better for perhaps a small number of
organisations operate drones and share data rather than NGOs filling the skies
with loads of expensive and noisy hardware.
Hopefully as organisations start to build up their institutional UAS capacity, we will see this new technology being operated legally and responsibly for the benefit of the communities we all serve.
models were quite large and came at a huge cost of over $2,000. Since 1991, GPS receivers have become much smaller and now built into many everyday items including phones, tablets and satellite telephones such as those made by Iridium, Thuraya and Inmarsat. GPS is also used by some IT systems as a reference point for accurate time.
The clock system used by the GPS system is completely
different to the time format of hours, minutes and seconds we all use. On April
the 6th, 2019, the clock system used by GPS will reach its highest
number and will the roll over to zero and start again. This is very similar to
the computer clock problem which was known as the Millennium Bug or Y2K.
Recent press reports have hyped up the GPS roll over as a big problem. One executive from Trend Micro stated at a conference recently that he will not be flying on the 6th April. So do we have a problem? Absolutely not. We have been here before as the GPS clock system last rolled over in 1999 with no major problems created. Planes did not fall out of the sky, and everybody’s sat-nav did not stop working. So in this article, I am going to explore the science between the GPS clock and explain what we will all remain safe and why GPS technology will keep running.
GPS depends upon its clock system
The GPS systems uses accurate atomic clocks for a time
reference. Time is used to calculate distance based on the speed that radio
waves take to travel from the satellites to GPS receiver. A minimum of
four satellites are needed to calculate a three dimension fix (Latitude,
Longitude and Altitude).
As GPS needs highly accurate time keeping, the time signals
from the GPS system is also used by IT systems as a time reference. One example
of this in action is the computer systems used to trade stock and shares around
the world.
The GPS system is digital which means that data is managed
using binary code (ones and zeros). Days, Hours, Minutes and seconds is a
format which does not work in computing, so binary counters are used to measure
time in a different format which is easier to use. Software on the GPS units
convert the GPS binary time to the normal format we all use.
The counter used to measure weeks is known as “10 bit
binary” which means that a maximum 1024 weeks are counted before the counter is
goes round the clock and back to zero. The GPS clock started in 1980 and the
first time the counter reached its maximum count took place in August 1999.
There were no major issues back then.
Does
the clock roll over present a risk?
Several newspapers in the UK has published some alarming
articles predicting disaster. The
SUN is one example of scaremongering which has no scientific grounding.
Many responsible commentators have added comments to some of these news
articles questioning the poor content written by people who do not have any
idea about the technology. The truth of the roll over is this – The GPS
system will continue to operate and nobody has any reason to worry! So here
is the reality check:
SatNav and other systems using GPS technology
will stop working? Untrue! The clock rollover occurred in 1999, GPS
manufacturers have been aware of this issue for a long time and have built
function into the design of systems to cope with the rollover. It is unlikely
that anyone will have an issue with a GPS purchased anytime over the past 5
years or more.
Some leading commentators have said that there
could be issues with flights and other forms of transport? Untrue! Ships
and aircraft use multiple technologies to navigate in addition to GPS. Many
modern satellite communications also use the Chinese and Russian navigation
systems as well as the USA GPS system.
Cell phones and satellite phones will stop
working as they lose their time reference? Untrue! Phones normally get
their time reference from the communications network. Some modern phones also
include the Russian and Chinese versions of GPS,
Conclusion: Ignore the press hype which
predicts doom and gloom. GPS will carry on working as normal. Most systems will
have the capability to handle the roll over. For that extra reassurance, people
can update the software (known as firmware) on older GPS receivers so they can
be 100% sure that there will not be an issue.
IT as an industry has played a supportive role to organisations but mainly as a “back office” service. The scope of this support service has traditionally ranged from fixing personal computers for individuals to keeping large cooperate data systems such as finance, HR and document storage running. But things need to change and in fact, they are changing as the IT role starts to adapt to a new 21st century way of working. In the humanitarian space, the delivery of programmes are beginning to use more technology. This means that the programmes people will require expert advice about technology to build and then run successful technology driven programmes.
One of the barriers to success is that there is a disconnect between IT people and the humanitarian people who run programmes. On the IT side, they use incomprehensible language or can appear to be inflexible about how technology is delivered. The programmes people can sometimes typecast IT into a limited role thinking that all IT does is to fix computers and perhaps have little to contribute to the delivery of programmes.
In this article, I am going to shine a spotlight on the wide range of technologies that IT teams support and then propose a model where technologist can work closely with the programmes teams to deliver great results for the populations which are supported by programmes.
The limitless scope of technology
IT is not just all about laptops and email accounts. We would not think of a hospital as a place just full of doctors. There is a range of specialists such as heart surgeons, tropical medicine experts, phycologists, pathologists, Nurses, Nuclear Medicine experts, Dietitians, radiographers just to name a few. The world of IT is similar with many specialists covering a mass of different technologies. Maybe “IT” as a brand no longer works? Perhaps we should change it?
So using its current brand, what can the IT team bring to programmes? Quite a lot in fact. The Tuesday Technical (and blog) has been running since 2014 and has plenty of examples of technology being used in a field setting. Here are just a few examples of where solutions go well beyond what is considered traditional IT:
UAVs (Drones): This is an emerging technology in the Humanitarian Sector. Initially smaller quad blade units have been used for aerial video, but larger UAVs have been used in search and rescue operations and to deliver medicines. The Emergency Telecoms Cluster established a new working group to work out how this new technology would be used within an emergency response setting.
Sustainable energy solutions: Technology needs electricity rights? So who owns it? It’s still technology and should sit within the same tech family as traditional IT. Sustainable energy is needed to run any remote tech that we might place in a remote community. Solar energy systems are often not sustainable as programme design often lacks the methods which could be used to keep systems working. But the good news is that there are now potential partners emerging which can deliver energy on a cost recover model.
In the emergency setting, as we use tech to deliver information and services to the affected communities via smart or feature phones, then we need to provide the means for people to charge their devices.
Communications and connectivity: One of the new buzz words is “Communications as aid” Whether it’s the provision of mobile phones to facilitate family reunion or Wi-Fi hots-spots, the future will see a rapid increase in the provision of communications and connectivity to the populations affected by a disaster. Providing connectivity and communications via radio, satellite or local networks has been core business in the Humanitarian IT sector and we are really good at it.
Internet of Things (IoT): In a connected world, we are starting to see a growth in a multitude of devices which are connected to the internet. Examples include real time vehicle tracking, Cold chain monitoring, and environmental sensors. This technology can be used to give early warning of water supply issues to communities or allow central support teams to monitor the health of a remote solar energy installation.
3D Printing: NGOs work in remote places which are difficult to get to. 3D printing is gaining in popularity and in a nutshell, this technology will make objects accurately. Early technologies have been able to create plastic items and potentially able to create plumbing items for WASH programmes. Technology is moving on, and more complex items can be made. Some units now print 3D objects using metal!
There are many more examples I could give where technology can add a lot of value to programmes. These are just practical examples. There is also a huge industry of data products such as mapping (GIS), Health (HIS) and so on.
Working together as a team
The technologist need to come out of the basement and speak to the programmes experts in plain language. At the same time, the programmes experts need to open the door and let the technologist in. The good news is that we are already seeing the beginnings of this approach. But we need to keep up the momentum to get even closer so that where technology is used to support programmes, we deliver success.
My personal view is that the brand “IT” has run its course and needs to be replaced. ICT4D has gathered some support, but still not dynamic enough. “Technology for Programmes” or T4P might just do it!
So what does T4P look like in the 21st century? How can we bring the technologist to the programmes table? The answer is simpler than you might think. Humanitarian programmes have been running for many decades with organisations like Save the Children approaching 100 years of aid delivery. The technologist can add much more to future programming as technology becomes more reliable and available. Here is an idea on how this can work:
Programmes teams already have a perfect model which delivers excellence. For most programmes there will be a tangible output which could be along the thematic areas of food, shelter, education, health, wash, child protection, and much more. For each of these thematic areas, programmes people will access technical experts for their input. This leads to a programme design which can then be fleshed out with a budget and implementation plan.
Technology has a role to play and I would like to see a new breed of T4P experts joining the team to work alongside all of the other thematic experts supporting the delivery of programmes. The T4P expert will need to be a good communicator and act as a broker between the programmes team/thematic experts and then the appropriate subject matter experts (SMEs) within the technology teams. Ideally with T4P experts involved in programme design from the start, we will be able to have a more positive impact where technology is needed.
IT as a function as a service provider will still be needed, but IT departments will need to expand and include a new pool of T4P talent to help deliver 21st Century programmes. There will need to be some mind-set changes. In larger organisations, more flexibility will be needed to deliver solutions to programmes as the old model of “One Size fits all” is not likely to work. T4P experts will need to build up a knowledgebase of solution so that when a new programme is considered, the following thought process is used:
1.For the new programme, what is their technical needs? 2.What are we doing already in other places which is similar? Do we already have an appropriate solution? 3.If not, what are others doing? Is there a solution we can buy off the shelf? 4.And if there are no current solutions, can we build one?
IT teams and the new breed of T4P experts will need to get out and network. Organisations like Nethope and the Emergency Telecoms Cluster are already working on beneficiary facing solutions. Though these extended networks, T4P experts can keep up to date with the new technology which is being developed which will contribute to the T4P expert becoming the Trusted Technology Expert for Programmes.
The Mobile World Congress is the annual gathering of the mobile phone industry each year in Barcelona. Some commentators (The Register and BBC Technology) have slammed the event as boring. For those who went to Barcelona with the intention to discover new smartphones, then yes, innovation is a little thin on the ground as most smartphones look similar and mostly Android based.
But the mobile world is much more than smart phones. The Internet of Things (IOT) is a concept where mobile connectivity connects devices and services to the internet. MWC2018 was bursting with plenty of innovation this year.
IOT is an evolving market and we will see plenty of innovation over the next few years which will be very useful to the aid sector. In this article we will explore a handful of solutions which may be useful to NGOs.
Mobile phone technology have evolved massively over the years. Whilst historically set up for voice communications, the networks are getting more geared towards providing increasingly faster data services. Future 5G technology will be able to exceed 100Mb/s. The current 3G and 4G technologies are delivering good services in many countries. In some developing countries, traditional wired infrastructure does not exists and we are seeing a leapfrog affect where nations ignore building traditional copper infrastructure in favour of building reliable mobile networks.
In the years ahead, it’s likely that many NGO offices will be using major mobile network operators for office internet connectivity. You might think this approach might be far in the future when 5G arrives. The reality is that good quality mobile internet is “here and now” as long as the right technology is used to access the networks. New multi-channel routers means that we can get more out of existing 3G and 4G networks simply by using multiple SIM cards simultaneously.
e-sim technology: When first introduced, the SIM card was the size of a credit card. The SIM was reduced to the mini format and then followed by micro sim and finally the nano sim. The electronic SIM (e-sim) is a new approach where a virtual SIM card is delivered to device electronically. This approach will make life easier for people who travel as they might in the future have a wallet of e-sims stored on their smartphones so that they can access the best rates and use local numbers in the countries where they are visiting.
E-sims have yet to find their way onto smartphones, but they have arrived already in some technologies such as the Telna GSM router. The router is fitted with four e-sim channels which means that 3G or 4G performance is quadrupled over single SIM technologies. The device is cloud managed which makes provisioning of services easy.
The four e-sims are loaded by Telna, but for organisations which have better rates with other providers who use traditional plastic SIM cards, they still can be used as the SIM cards can be sent to Telna where they are then applied to the device in e-format.
The Telna system could be a suitable option to many NGO field sites as it gives organisations the flexible technology needed to switch providers easily in a rapidly changing market. Reliability can also be improved as different networks can be applied to the four available channels.
This technology is going to be applied to Save the Children emergency response pre-positioned equipment. Traditionally satellite technology such as BGAN and VSAT has been used in emergency settings, but as we learnt in some parts of the Caribbean in 2017, GSM networks have improved their resilience and come back online quickly. So how much does this technology cost? The router is $999 and data costs $25 per GB. When compared to some packages in developed countries, this might appear pricy, by when compared to a 5Mb/sec VSAT connection which costs $5,000 per month (maximum throughput of 25GB), the 3G router would only cost $625 to deliver the same volume of data.
One other innovation from Telna is the sticky sim – this is a sticker which goes onto a standard SIM card turning the existing SIM card into a dual SIM.
AT&T: As a global brand, AT&T has some IOT products in the market. AT&T recently signed global agreement with Caterpillar (Makers of engines, generators and construction equipment) to use GSM networks to monitor the performance of assets. For NGOs, this IOT offering could be a great way to monitor the health and fuel performance of generators.
AT&T is also working on a range of technologies to support healthcare. Telemedicine technology is available to carry out basic checks such as heart rate / blood pressure and even to analyse saliva for certain indicators. This information can allow qualified doctors in remote locations to diagnose conditions and prescribe medicines.
The transport of Vaccines is also a challenge in hot countries, the tech flask (in the picture) has the ability to monitor location and temperature of its contents whilst in transit. This gives the confidence to medics that the vaccine is safe and have arrived in good condition.
Eutelsat: WMC2018 is all about terrestrial solutions…, right? Well amongst the hundreds of 3G tech companies I was surprised to see Eutelsat pushing its latest spin off company Konnect. Over the past two years or more, Eutelsat has been very vocal about its future VSAT offering (Ka Band). The new satellite internet technology is targeted at the domestic market and aims to go head to dead with other internet providers, especially in rural settings.
With the roll out of fibre across Africa, Satellite based internet could be regarded as a shrinking market. But when you look at the number of physical cables connecting Africa to the rest of the world, it is clear that there is a finite amount of capacity which may be problematic to the various companies emerging to supply internet based services. More sea cables will improve the situation, but in the meantime, the Eutesat/Konnect offer might add some value, especially to rural communities.
Konnect services are not available commercially yet. Trials are planned in Kenya and some other countries in the next few months. At WMC2018, Konnect was showing off a rugged unit which incorporates VSAT, Wi-Fi and a content server. This technology would be a great system to use in a rural school as some content can be loaded onto the box for education (and not rely on live internet). This system is also designed to manage a power feed from a solar energy system.
Conclusion: Whilst the World Mobile Congress lacked breakthroughs in new smartphones (Apple and Google tend to launch products at times of their own choosing), there was a great deal of innovation on display which leavers the benefits of a connected world via GSM. Shengen is regarded as the Silicon Valley of China. Lots of innovators from Shengen were at MWC2018 showcasing a lot of technology. IOT is going to be the new buzzword over the next couple of years. The MWC forum is an area for NGOs should watch as this is where we will be able to identify excellent tools to help our humanitarian community delver technology enabled programmes.
In the UK, for many years, the Government have tried many methods to influence the behaviour of the population for their own good. We know that smoking is bad for us, but its legal. So to discourage smoking, the government places high taxes on tobacco to discourage smoking. On the roads, the wearing of seatbelts in cars or helmets for motor cyclists are mandatory as part of an effort to reduce road deaths. The trouble is that whilst governments want to do things which are to the benefit of citizens, they are often accused of being the “nanny state” if they use too much carrot and not enough stick.
Softer methods are being tried to influence behaviours in the UK. The government formed the “Nudge Unit” to explore ways where behaviours in the population can be changed for the benefit of all. The unit uses social media amongst other tools to promote behaviours such as going to the doctor for check-ups are certain times in our lives. This would include campaigns such as breast cancer screening or blood pressure checks for folks of a certain age.
There are endless reasons why a government may wish to nudge people to do things for their own good. In developed countries, governments will use radio, TV, social media, newspapers and other channels to influence behaviour. But in the developing nations of the Global South, how can governments and NGOs influence the population which a significant number of people might be illiterate, or lack access to infrastructure and technology? In this article, I want to shine a spotlight on an organisation called Literacy Bridge. They have a very innovative approach to message rural population and a way to measure how successful their approach has been.
For many years, health NGOs and UN agencies have delivered programmes which improves the health of the nation. Malaria is one of the biggest killers. We know that we can reduce malaria infections through programmes to distribute bed nets. But how do we get the population to use the nets properly and to refresh the insecticide in the nets? How can we promote other health related topics such as breast feeding, routine vaccinations, and other important messages?
Social media does have a role to play alongside radio and TV broadcasts, but it will exclude a significant percentage of rural communities as many people do not have access to a smartphone. Where smartphones exists, they are mainly used by men which means that some messages targeted at women will not be passed on.
Literacy Bridge is using technology to get messages to rural communities in a very innovative way. Their talking book is a robust unit built by ARM, a leading edge technology manufacturer which was spun off by the University of Cambridge in the UK. The talking book has a series of pre-recorded messages stored on a memory card which can be played by members of the community where the technology is distributed. The memory card is sufficiently large enough to allow families to record feedback for programme managers to collect.
Each unit has a unique ID and its location is registered when it is handed over to the community. Whilst it is deployed, in addition to the recoded feedback, the system also logs what messages were played and how often. Over a period of time, project teams will visit the communities to collect the data and to replace the existing content with new messages. This exchange of messages and data can be done using an application on a smartphone.
The talking book runs on standard batteries. In communities where batteries are hard to source, project teams can supply rechargeable batteries with a solar charger.
Literacy Bridge is a “Not for Profit” and is very keen that its product is reliable and has a very positive impact on the communities where messages are being delivered. Their approach is to partner with organisations to deliver messaging as part of a wider campaign. They are driven by success and have worked with organisations such as Care and UNICEF.
To deliver reliable and sustainable technology, they do not sell talking books. They use a leasing model through local partners who will ensure that the units are supported in country.
The quality of content is very important to Literacy Bridge. They want messages to be accurate, and appropriate to the communities where the technology is being used. The content will be in local dialects and may take the form of interviews with senior role models, songs and plays.
So, what does success look like? Well in 2013, Literacy Bridge was running a programme in partnership with UNICEF in Ghana’s Jirapa District in the Upper West Region. They reached 44,000 people in 49 communities. The feedback demonstrated that 50% of pregnant women and children were more likely to sleep under bed nets when using talking books.
Conclusion: The Literacy Bridge approach can be regarded as ICT4D. Within the SCI IT team, we like to call it “Technology for Programmes (T4P)” as we feel that simple practical solutions to real problems is the way forward to alleviate suffering now. In the wider ICT4D community, there are people looking at artificial intelligence and big data. I am sure that the big conferences which promote these big ideas as an academic exercise will deliver something amazing in the near future. However whilst academia works hard to ask the big questions on how we can use big data for the greater good, at the same time, we need to stay focused on identifying simple and sustainable innovation which can have an instant impact on communities today.